|
|
|
|
|
|
|
|
|
|
|
Fri, 1st May 2020 13:12:00 |
Green method could enable hospitals to produce hydrogen peroxide in house |
A team of researchers has developed a portable, more environmentally friendly method to produce hydrogen peroxide. It could enable hospitals to make their own supply of the disinfectant on demand and at lower cost.
The work, a collaboration between the University of California San Diego, Columbia University, Brookhaven National Laboratory, the University of Calgary, and the University of California, Irvine, is detailed in a paper published in Nature Communications.
Hydrogen peroxide has recently made headlines as researchers and medical centers around the country have been testing its viability in decontaminating N95 masks to deal with shortages amid the COVID-19 pandemic.
While results so far are promising, some researchers worry that the chemical's poor shelf life could make such decontamination efforts costly.
The main problem is that hydrogen peroxide is not stable; it starts breaking down into water and oxygen even before the bottle has been opened. It breaks down even more rapidly once it is exposed to air or light.
"You maybe only have just a couple of months to use it before it expires, so you would have to order batches more frequently to keep a fresh supply," said UC San Diego nanoengineering professor Zheng Chen. "And because it decomposes so quickly, shipping and storing it become very expensive."
Chen and colleagues developed a quick, simple and inexpensive method to generate hydrogen peroxide in house using just a small flask, air, an off-the-shelf electrolyte, a catalyst and electricity.
"Our goal is to create a portable setup that can be simply plugged in so that hospitals, and even households, have a way to generate hydrogen peroxide on demand," Chen said. "No need to ship it, no need to store it, and no rush to use it all before it expires. This could save up to 50 to 70% in costs."
Another advantage is that the method is less toxic than industrial processes.
The method is based on a chemical reaction in which one molecule of oxygen combines with two electrons and two protons in an acidic electrolyte solution to produce hydrogen peroxide. This type of reaction is known as the two-electron oxygen reduction reaction, and it is user-friendly because it can produce dilute hydrogen peroxide with the desired concentration on demand. "In the next step, we will develop electrocatalysts suitable for other electrolyte solutions to further increase the range of its applications," said UC San Diego chemical engineering graduate student Qiaowan Chang.
Read original full article
|
|
|
|
Back to Featured Articles
|
|
|
|
|
|
|
|
|
|
|
Energy News
|
|
|
|