|
|
|
|
|
|
|
|
|
|
|
Wed, 19th Aug 2020 16:09:00 |
Hydrogen economy with mass production of high-purity hydrogen from ammonia |
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research. This confirms the possibility of using ammonia as a hydrogen carrier to transport large amounts of hydrogen over long distances.
Although the need to build a global clean energy supply network has been noted worldwide, there are constraints when it comes to transporting renewable energy in the form of electricity over long distances. This has resulted in a growing demand for a technology that can convert surplus renewable energy into hydrogen and transport the hydrogen to the target destination for utilization.
Hydrogen gas, however, cannot be transported in large amounts due to the limitations in the amount that can be stored per unit volume. A strategy suggested to overcome this issue is the use of chemicals in liquid form as hydrogen carriers, similar to the current method of transporting fossil fuels in a liquid form.
Liquid ammonia (hydrogen storage density per volume: 108kg-H2/m3) is capable of storing around 1.5 times more hydrogen than liquefied hydrogen under the same volume. Unlike the conventional hydrogen production method of natural gas steam reforming in which large amounts of carbon dioxide is emitted in the production process, the hydrogen production method using ammonia only leads to the generation of hydrogen and nitrogen.
Despite the many advantages presented by ammonia, there has been relatively little research on producing high-purity hydrogen from ammonia and generating electricity in conjunction with fuel cells.
Read original full article
|
|
|
|
Back to Featured Articles
|
|
|
|
|
|
|
|
|
|
|
Energy News
|
|
|
|